

DNSSEC: dealing with hosts that don't get fragments

Roland van Rijswijk roland.vanrijswijk@surfnet.nl

RIPE 64 DNS wg, Ljubljana, April 18th 2012

Introducing the issue

- In 2010 and in March last year we had "issues" with a very large ISP in The Netherlands
- Customers of the ISP were unable to resolve names in surfnet.nl
- The cause turned out to be an issue with the **ISP's firewall**

A picture to make it clearer ;-)

Serious business

- Even though we do everything by the book w.r.t. DNSSEC, and even if people don't validate they still have trouble resolving host names in our zone
- We are a research network, so a few bumps in the road don't scare us
- But think of the big enterprises we are trying to convince to start deploying DNSSEC!
- Also: the ISP was unable/unwilling to change the firewall setting ("It's almost Christmas")

Research at SURFnet

- Short student assignment to confirm the problem http://bit.ly/dnssec-frags
- Student research confirmed: FRTE messages show up when UDP fragments are dropped
- Currently: M.Sc. student working on problem mitigation options and better detection

How big is the problem?

#1 -- EDNSO use:

Well over 50% of querying hosts use EDNSO

How big is the problem?

#2 -- EDNSO advertised buffer size

About 90% advertise (default) 4K buffer size

How big is the problem?

#3 -- DNSSEC OK bit set:

The vast majority sets DO=1

Mitigation approaches

- Two approaches to mitigation
- One: lowering the EDNSO buffer size on one of the authoritative name servers in the NS set of a domain
- Two: detecting problem hosts with a sensor and adapting name server behaviour (dynamically adjusting EDNSO buffer size)

- ICMP may be blocked by a firewall
- How to detect problem hosts that aren't allowing ICMP through?
- Heuristic approach, 5 rules

#1	ICMP FRTE is seen
#2	EDNSO header toggled on/off by querying host
#3	(Excessive) retries within TTL of record
#4	Changing EDNSO buffer size in queries
#5	Fallback to TCP without truncation

- Experiment #1:

Lowering the EDNSO buffer size on one authoritative name server to 1232 bytes, so below IPv6 minimum MTU

- Experiment #2:

Selectively modify advertised EDNSO buffer size in queries originating from "problem" hosts before they reach the name server

Problem hosts detected

SURFnet. We make innovation work

ICMP FRTE behaviour

Bottom line: both approaches tackle the problem

SURF

NET

Some side-effects

Note: long bars, but very low percentages

SURFnet. We make innovation work

Conclusion

- This seems to be a serious issue for DNSSECsigned zones
- There are ways to ameliorate the problem
- We are considering writing a best-practice paper (or even an informational RFC)
- Expect a paper in IEEE CC Review or ACM Transactions on Networking
- Check your firewall settings if you start doing **DNSSEC** validation on your resolvers!

Questions? Comments?

Please contact me!

roland.vanrijswijk@surfnet.nl

nl.linkedin.com/in/rolandvanrijswijk