DNSSEC: dealing with hosts that don’t get fragments

RIPE 64 DNS wg, Ljubljana, April 18th 2012

Roland van Rijswijk
roland.vanrijswijk@surfnet.nl
Introducing the issue

- In 2010 and in March last year we had “issues” with a very large ISP in The Netherlands

- Customers of the ISP were unable to resolve names in surfnet.nl

- The cause turned out to be an issue with the ISP’s firewall
A picture to make it clearer ;-)
Serious business

- Even though we do everything by the book w.r.t. DNSSEC, and even if people don’t validate they still have trouble resolving host names in our zone

- We are a research network, so a few bumps in the road don’t scare us

- But think of the big enterprises we are trying to convince to start deploying DNSSEC!

- Also: the ISP was unable/unwilling to change the firewall setting ("It’s almost Christmas")
Research at SURFnet

- Short student assignment to confirm the problem

- Student research confirmed: FRTE messages show up when UDP fragments are dropped

- Currently: M.Sc. student working on problem mitigation options and better detection
How big is the problem?

#1 -- EDNS0 use:

Well over 50% of querying hosts use EDNS0
How big is the problem?

#2 -- EDNS0 advertised buffer size

About 90% advertise (default) 4K buffer size
How big is the problem?

#3 -- DNSSEC OK bit set:

The vast majority sets DO=1
Mitigation approaches

- Two approaches to mitigation

- One: lowering the EDNS0 buffer size on one of the authoritative name servers in the NS set of a domain

- Two: detecting problem hosts with a sensor and adapting name server behaviour (dynamically adjusting EDNS0 buffer size)
Real detection

- ICMP may be blocked by a firewall
- How to detect problem hosts that aren’t allowing ICMP through?
- Heuristic approach, 5 rules

<table>
<thead>
<tr>
<th>#</th>
<th>Rule Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>ICMP FRTE is seen</td>
</tr>
<tr>
<td>#2</td>
<td>EDNS0 header toggled on/off by querying host</td>
</tr>
<tr>
<td>#3</td>
<td>(Excessive) retries within TTL of record</td>
</tr>
<tr>
<td>#4</td>
<td>Changing EDNS0 buffer size in queries</td>
</tr>
<tr>
<td>#5</td>
<td>Fallback to TCP without truncation</td>
</tr>
</tbody>
</table>
Experiments

- Experiment #1:
 Lowering the EDNS0 buffer size on one authoritative name server to 1232 bytes, so below IPv6 minimum MTU

- Experiment #2:
 Selectively modify advertised EDNS0 buffer size in queries originating from “problem” hosts before they reach the name server
Problem hosts detected

Analysis shows: ≥2% confirmed problem host
ICMP FRTE behaviour

Bottom line: both approaches tackle the problem
Some side-effects

Note: long bars, but very low percentages
Conclusion

- This seems to be a serious issue for DNSSEC-signed zones

- There are ways to ameliorate the problem

- We are considering writing a best-practice paper (or even an informational RFC)

- Expect a paper in IEEE CC Review or ACM Transactions on Networking

- Check your firewall settings if you start doing DNSSEC validation on your resolvers!
Questions? Comments?
Please contact me!

roland.vanrijswijk@surfnet.nl
nl.linkedin.com/in/rolandvanrijswijk
@reseauxsansfil