

Tore Anderson

Redpill Linpro AS

RIPE64, Ljubljana, April 2012

The case for IPv6-only data centres
...and how to pull it off in today's IPv4-dominated world

IPv6 deployment approaches

0) Traditional IPv4-only DC environment

websrv1

websrv2

filesrv

dbsrv

load-balancer

IPv4-only

Internet

1) IPv4-only + IPv6 via NAT or proxy

websrv1

websrv2

filesrv

dbsrv

Internet

IPv4-only

IPv6-
only

NAT/proxy

load-balancer

IPv6 deployment approaches

2) Dual-stacked public front-end, IPv4 BE

websrv1

websrv2

filesrv

dbsrv

IPv4-onlyDual-stack

load-balancer

Internet

IPv6 deployment approaches

3) Full dual-stack

websrv1

websrv2

filesrv

dbsrv

Dual-stack

load-balancer

Internet

IPv6 deployment approaches

4) Dual-stacked public front-end, IPv6 BE

websrv1

websrv2

filesrv

dbsrv

IPv6-onlyDual-stack

load-balancer

Internet

IPv6 deployment approaches

5) IPv6-only + IPv4 via NAT or proxy

websrv1

websrv2

filesrv

dbsrv

Internet

IPv6-only

IPv4-
only

load-balancer

NAT/proxy

IPv6 deployment approaches

6) IPv6-only, no IPv4 connectivity at all

websrv1

websrv2

filesrv

dbsrv

load-balancer

IPv6-only

Internet

IPv6 deployment approaches

Incremental IPv6 deployment

• IPv4-only
IPv4-only + IPv6 via NAT/proxy
Dual-stacked public frontend, IPv4 BE
Full dual-stack
Dual-stacked public frontend, IPv6 BE
IPv6-only + IPv4 via NAT/proxy
IPv6-only

What's possible today?

• IPv4-only
IPv4-only + IPv6 via NAT/proxy
Dual-stacked public frontend, IPv4 BE
Full dual-stack
Dual-stacked public frontend, IPv6 BE
IPv6-only + IPv4 via NAT/proxy
IPv6-only

< 1% of end-users world-wide have IPv6!

Let's take a shortcut...

• IPv4-only
IPv4-only + IPv6 via NAT/proxy
Dual-stacked public frontend, IPv4 BE
Full dual-stack
Dual-stacked public frontend, IPv6 BE
IPv6-only + IPv4 via NAT/proxy
IPv6-only

Why skip dual-stack?

• DS implies lots of unwanted complexity
• More ACLs, monitoring, troubleshooting,

possible failures, training, documentation, ...

• Saves lots of precious IPv4 addresses
• 1 IPv4 per service, rather than 1+ per server

• Forces sysadmins to learn and use IPv6
• They resist change and new technologies
• Provision dual-stack and they'll use IPv4 only

• Perform a single IPv6 migration project

Stateless IP/ICMP
Translation (SIIT)

RFCs 6052, 6145

(Also known as Stateless
NAT64 and IVI)

IPv6
::/0

(not to scale)

SIIT in a nutshell

• Maps the entire IPv4 address space into an
IPv6 prefix from the SP's address space

• Translates IPv4/ICMPv4 headers into
IPv6/ICMPv6 headers, and vice versa

IPv6-mapped IPv4
2001:db8::0.0.0.0/96

IPv4
0.0.0.0/0

SIIT theory

203.0.113.50

• An IPv4-translatable IPv6 address from a
pre-defined /96 prefix (that represents the
IPv4 internet) is configured on the server

• This address is routed to the server using
regular IPv6 routing techniques

IPv6-onlyIPv4-only

2001:db8::198.51.0.10
(2001:db8::c633:a)

An IPv4 client connecting

• The IPv4 service address is published as a
regular A record for the service in DNS

• It's routed to the provider's SIIT gateways
using standard IPv4 routing techniques

• IPv4 clients connect to it in a normal way

IPv6-onlyIPv4-only

203.0.113.50

SRC: 203.0.113.50
DST: 198.51.0.10
HTTP GET /foo [...]

2001:db8::198.51.0.10
(2001:db8::c633:a)

IPv4->IPv6 translation

• The pre-defined /96 prefix is prepended
to the IPv4 packet's SRC and DST fields

• Layer 4 payload is copied verbatim
• The packet is then routed to the server as

a completely ordinary IPv6 packet

IPv6-onlyIPv4-only

203.0.113.50

SRC: 203.0.113.50
DST: 198.51.0.10
HTTP GET /foo [...]

SRC: 2001:db8::203.0.113.50
DST: 2001:db8::198.51.0.10
HTTP GET /foo [...]

2001:db8::198.51.0.10
(2001:db8::c633:a)

IPv6 server processing

• The server responds to the packet just as
it would with any other IPv6 packet

• The original IPv4 source address isn't lost
• The /96 prefix (equivalent to the IPv4

default route) is routed to a SIIT gateway

IPv6-onlyIPv4-only

203.0.113.50

SRC: 203.0.113.50
DST: 198.51.0.10
HTTP GET /foo [...]

SRC: 2001:db8::203.0.113.50
DST: 2001:db8::198.51.0.10
HTTP GET /foo [...]

SRC: 2001:db8::198.51.0.10
DST: 2001:db8::203.0.113.50
HTTP 200 OK [...]

2001:db8::198.51.0.10
(2001:db8::c633:a)

IPv6->IPv4 translation

• The /96 prefix is stripped from the IPv6
packet's SRC and DST fields

• Layer 4 payload is untouched
• The resulting IPv4 packet is returned to

the client which processes it normally

IPv6-onlyIPv4-only
SRC: 203.0.113.50
DST: 198.51.0.10
HTTP GET /foo [...]

SRC: 2001:db8::203.0.113.50
DST: 2001:db8::198.51.0.10
HTTP GET /foo [...]

DST: 2001:db8::198.51.0.10
SRC: 2001:db8::203.0.113.50
HTTP 200 OK [...]

SRC: 2001:db8::198.51.0.10
DST: 2001:db8::203.0.113.50
HTTP 200 OK [...]

SRC: 198.51.0.10
DST: 203.0.113.50
HTTP 200 OK [...]

203.0.113.50
2001:db8::198.51.0.10

(2001:db8::c633:a)

SIIT highlights

• Stateless per-packet operation
– You can use anycast, ECMP load balancing, ...
– Does not require flows to flow bidirectionally

across a single translator
– Concurrent flow count and fps are irrelevant

for performance (unlike NAT44 and proxies)

• The original IPv4 address remains known
– Applications may geolocate IPv4 users

• Very simple to understand and implement

Applicability

• If the application doesn't work through
NAT44, it will likely not work with SIIT
– e.g., FTP (uses IP literals in Layer 7 payload)
– implementations might provide ALGs though

• If the application does work with NAT44, it
will likely work with SIIT as well
– e.g., HTTP and HTTPS

• The server software must support IPv6

Overriding the address
mapping

• With plain SIIT, servers must have the
IPv4-translatable IPv6 address assigned
– Means /128s must be carried in the IPv6 IGP
– Extra work for the systems administrators

• Better: Statically map IPv4 addresses to
arbitrary IPv6 addresses (and vice versa)
– No extra IPv6 routes or addresses required
– The sysadmin must only request a public IPv4

frontend for the server's primary IPv6 address
– Vendor extension (on the Cisco ASR roadmap)

Appendix A

MTU considerations

IP header size difference

• The IPv6 header is (usually) 20 bytes larger than the IPv4 header

• Assuming identical MTUs, full-sized IPv4 packets cannot fit in a single IPv6 packet

• This is generally not a problem for TCP applications, because the IPv6 server will advertise a
Maximum Segment Size of 1440 bytes, which in turn limits the TCP Protocol Data Unit to 1460
bytes (and thus the IPv4 packet size to 1480 bytes)

• IPv4 packets larger than 1480 bytes with the Don't Fragment flag set will cause the translator to
return an ICMPv4 Need To Fragment advertising a Path MTU of 1480

– At the time of writing, this is buggy in the Cisco ASR implementation (CSCtw77053)

• Non-DF IPv4 packets >1480 bytes must be split into two IPv6 fragments by the translator

• Fragments can be avoided completely by running the data centre with MTU >= 1520

Payload
(1480 bytes)

(not to scale)

IPv6 header
(40 bytes)

Payload
(1480 bytes)

(not to scale)

IPv4 header
(20 bytes)

Pa
ck

e
t

si
ze

1500 bytes
(Standard Ethernet MTU)

0

IPv4-IPv6
translation

1500 bytes
(Standard Ethernet MTU)

IPv6 PMTUD with PMTU < 1280

• A link in the IPv4 path towards the client may have an IPv4 MTU smaller than 1260 bytes

– This translates into an IPv6 Path MTU smaller than 1280 bytes

• According to RFC 2460, an IPv6 node receiving an ICMPv6 Packet Too Big indicating a Path MTU
smaller than 1280 bytes has two choices on how to deal with it:

a) limit the size of subsequent packets to the indicated Path MTU, or

b) limit the size of subsequent packets to exactly 1280 bytes, and also include a Fragmentation
header. The Fragmentation header instructs the translator to clear the DF flag in the translated
IPv4 packet, and provides the Identification value. This allows the IPv4 router to fragment the
packet as it is being forwarded onto the link with the small MTU

● The Linux kernel takes the second approach, but it is at the time of writing buggy:

https://bugzilla.kernel.org/show_bug.cgi?id=42595 & https://bugzilla.kernel.org/show_bug.cgi?id=42572

IPv6-onlyIPv4-only

MTU=1000

1) IPv6 data
no Frag header
(1280 bytes)

2) IPv4 data
DF = 1

(1260 bytes)

3) ICMPv4
Frag Needed
MTU = 1000

4) ICMPv6
Packet Too Big
MTU = 1020

SIIT gateway
IPv4 router

https://bugzilla.kernel.org/show_bug.cgi?id=42595
https://bugzilla.kernel.org/show_bug.cgi?id=42572

Appendix B

Cisco ASR1K configuration example

Basic IPv4/IPv6 connnectivity
• The SIIT gateway needs full connectivity to

the IPv4 internet

• In this case I use a static default route to
the upstream IPv4 router 87.238.62.26
(connected to Gi0/0/0)

– However, the necessary IPv4
connectivity could just as well have
been provided by a default route
learned from an interior gateway
protocol, or from a full BGP feed

• It also needs to be connected to the
provider's IPv6 network

– A default IPv6 route is not necessary
(but doesn't cause any problems
either)

!
interface GigabitEthernet0/0/0
 description IPv4 uplink interface
 ip address 87.238.62.27 255.255.255.254
 nat64 enable
!
interface GigabitEthernet0/0/1
 description IPv6 uplink interface
 ipv6 address 2A02:C0:1:102::2/64
 nat64 enable
 nat64 settings mtu minimum 1500
!
ip route 0.0.0.0 0.0.0.0 87.238.62.26
!
ipv6 route 2A02:C0::46:0:57EE:3D80/121 2A02:C0:1:102::1
!
nat64 prefix stateless 2A02:C0:0:0:46::/96
nat64 settings fragmentation header disable
nat64 route 87.238.61.128/25 GigabitEthernet0/0/1
!

Basic SIIT configuration
• NAT64 functionality (which includes

stateless translation) is enabled on both
the IPv4 and the IPv6 uplink interface

• An IPv6 prefix for stateless translation is
chosen and configured on the translator

– This prefix can have any of the
following prefix lengths: /32, /40, /48, /
56, /64, or /96 (cf. RFC 6052 section
2.2)

– When using a /96, the embedded IPv4
addresses will occupy the last 32 bits
of the resulting IPv6 address

– The prefix should be taken from the
operator's public IPv6 pool and be
globally reachable

• The reason for this is that the
servers will be configured with
addresses from within the
translation prefix, and could
potentially attempt to use them
as source addresses when
establishing connections to native
IPv6 destinations off-net

!
interface GigabitEthernet0/0/0
 description IPv4 uplink interface
 ip address 87.238.62.27 255.255.255.254
 nat64 enable
!
interface GigabitEthernet0/0/1
 description IPv6 uplink interface
 ipv6 address 2A02:C0:1:102::2/64
 nat64 enable
 nat64 settings mtu minimum 1500
!
ip route 0.0.0.0 0.0.0.0 87.238.62.26
!
ipv6 route 2A02:C0::46:0:57EE:3D80/121 2A02:C0:1:102::1
!
nat64 prefix stateless 2A02:C0:0:0:46::/96
nat64 settings fragmentation header disable
nat64 route 87.238.61.128/25 GigabitEthernet0/0/1
!

The IPv4 service address
prefix

• An IPv4 prefix is allocated from the
operator's public address pool (in this
example 87.238.61.128/25) and configured
as a nat64 route

– The mandatory interface parameter is
meaningless unless you're configuring
nat64 prefix at the interface level, in
which case the parameter determines
which nat64 prefix that gets used

• The prefix contains the IPv4 service
addresses IPv4 clients will make
connections to (that will in turn be
translated to IPv6)

• The gateway must also have a specific IPv6
route to the translated destination prefixes

– Without it, the translated IPv6 packets
would have followed the /96 route and
loop back into the NAT64 function

– In this example I use a static route to
2a02:c0::46:0:57ee:3d80/121 (the
translated equivalent of
87.238.61.128/25) to the uplink router
on Gi0/0/1, but /128s learned from the
IGP would also work

!
interface GigabitEthernet0/0/0
 description IPv4 uplink interface
 ip address 87.238.62.27 255.255.255.254
 nat64 enable
!
interface GigabitEthernet0/0/1
 description IPv6 uplink interface
 ipv6 address 2A02:C0:1:102::2/64
 nat64 enable
 nat64 settings mtu minimum 1500
!
ip route 0.0.0.0 0.0.0.0 87.238.62.26
!
ipv6 route 2A02:C0::46:0:57EE:3D80/121 2A02:C0:1:102::1
!
nat64 prefix stateless 2A02:C0:0:0:46::/96
nat64 settings fragmentation header disable
nat64 route 87.238.61.128/25 GigabitEthernet0/0/1
!

Preventing unnecessary frags 1
• The RFC takes a conservative approach by

default, and assumes that the IPv6 Path MTU
is 1280 bytes

– Inbound IPv4 w/DF=0 packets that would
result in IPv6 packets exceeding 1280
bytes in size will instead be split in two
fragments (both smaller than 1280)

• In a data centre environment, however, we
usually know that IPv6 Path MTU between the
translator and the servers is (at least) 1500
bytes, so this behaviour is not necessary

• nat64 settings mtu minimum 1500 tells the
translator that the Path MTU between itself
and the IPv6 servers (behind Gi0/0/1) is at
least 1500 bytes, this avoiding fragmentation
of DF=0 IPv4 packets exceeding 1260 bytes

– However, IPv4 packets exceeding 1480
bytes will still be fragmented (as they
translate into IPv6 packets exceeding
1500 bytes)

• You can avoid all IPv6 fragmentation by
increasing both the IPv6 Interface and Path
MTU to at least 1520 bytes

!
interface GigabitEthernet0/0/0
 description IPv4 uplink interface
 ip address 87.238.62.27 255.255.255.254
 nat64 enable
!
interface GigabitEthernet0/0/1
 description IPv6 uplink interface
 ipv6 address 2A02:C0:1:102::2/64
 nat64 enable
 nat64 settings mtu minimum 1500
!
ip route 0.0.0.0 0.0.0.0 87.238.62.26
!
ipv6 route 2A02:C0::46:0:57EE:3D80/121 2A02:C0:1:102::1
!
nat64 prefix stateless 2A02:C0:0:0:46::/96
nat64 settings fragmentation header disable
nat64 route 87.238.61.128/25 GigabitEthernet0/0/1
!

Preventing unnecessary frags 2
• A translator will by default add an IPv6

Fragmentation header when translating
any IPv4 packet with the Don't Fragment
flag unset

– This happens even though the
resulting IPv6 packet does not exceed
the IPv6 Path MTU, and therefore
aren't actually fragmented

– According to RFC 6145, it is done in
order «to indicate that the sender
allows fragmentation»

• This behaviour can be avoided by
configuring nat64 settings fragmentation
header disable

– Note that the translator will still insert
Fragmentation headers when it is
actually fragmenting, i.e., when it is
translating an IPv4 packet which would
exceed the configured IPv6 Path MTU

!
interface GigabitEthernet0/0/0
 description IPv4 uplink interface
 ip address 87.238.62.27 255.255.255.254
 nat64 enable
!
interface GigabitEthernet0/0/1
 description IPv6 uplink interface
 ipv6 address 2A02:C0:1:102::2/64
 nat64 enable
 nat64 settings mtu minimum 1500
!
ip route 0.0.0.0 0.0.0.0 87.238.62.26
!
ipv6 route 2A02:C0::46:0:57EE:3D80/121 2A02:C0:1:102::1
!
nat64 prefix stateless 2A02:C0:0:0:46::/96
nat64 settings fragmentation header disable
nat64 route 87.238.61.128/25 GigabitEthernet0/0/1
!

Further reading:

RFC 6052 - IPv6 Addressing of IPv4/IPv6 Translators

RFC 6145 - IP/ICMP Translation Algorithm

RFC 6219 - The China Education and Research Network (CERNET) IVI

http://toreanderson.no - My personal home page (contact info, social media links, slides from this and
earlier talks)

http://redpill-linpro.com - My employer and sponsor of this project

Note: IPv4 traffic to both of the above URLs is routed through a SIIT gateway (eating my own dog food)

Questions?
Thank you for listening!

http://toreanderson.no/
http://redpill-linpro.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

